# 1074-number-of-submatrices-that-sum-to-target Try it on leetcode ## Description

Given a matrix and a target, return the number of non-empty submatrices that sum to target.

A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.

Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.

 

Example 1:

Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.

Example 2:

Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.

Example 3:

Input: matrix = [[904]], target = 0
Output: 0

 

Constraints:

## Solution(Python) ```Python class Solution: def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int: return self.optimal(matrix, target) # Time Complexity: O((m*n)^3) # Space Complexity: O(1) def bruteforce(self, matrix: List[List[int]], target: int) -> int: res = 0 m = len(matrix) n = len(matrix[0]) def submatrixSum(rowStart, rowSize, colStart, colSize): subMatrixSum = 0 for i in range(rowStart, rowstart + rowSize): for j in range(colStart, colStart + colSize): subMatrixSum += matrix[i][j] return subMatrixSum for rowStart in range(m): for rowSize in range(1, m + 1): for colStart in range(n): for colSize in range(1, n + 1): if submatrixSum(rowStart, rowSize, colStart, colSize) == target: res += 1 return res # Time Complexity: O((m*n)^2) # Space Complexity: O(m*n) def better(self, matrix: List[List[int]], target: int) -> int: res = 0 m = len(matrix) n = len(matrix[0]) for row in range(m): for col in range(1, n): matrix[row][col] += matrix[row][col - 1] for colstart in range(n): for colend in range(colstart, n): for rowstart in range(m): sub_sum = 0 for rowend in range(rowstart, m): sub_sum += ( matrix[rowend][colend] - matrix[rowend][colstart - 1] if colstart else 0 ) if sub_sum == target: res += 1 return res # Time Complexity: O((m^2*n)) # Space Complexity: O(m*n) def optimal(self, matrix: List[List[int]], target: int) -> int: res = 0 m = len(matrix) n = len(matrix[0]) for row in range(m): for col in range(1, n): matrix[row][col] += matrix[row][col - 1] for colstart in range(n): for colend in range(colstart, n): cur_sum = 0 hash_map = {0: 1} for rowstart in range(m): cur_sum += matrix[rowstart][colend] - ( matrix[rowstart][colstart - 1] if colstart > 0 else 0 ) res += hash_map.get(cur_sum - target, 0) hash_map[cur_sum] = hash_map.get(cur_sum, 0) + 1 return res ```