# 1480-running-sum-of-1d-array Try it on leetcode ## Description

Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i]).

Return the running sum of nums.

 

Example 1:

Input: nums = [1,2,3,4]
Output: [1,3,6,10]
Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Example 2:

Input: nums = [1,1,1,1,1]
Output: [1,2,3,4,5]
Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].

Example 3:

Input: nums = [3,1,2,10,1]
Output: [3,4,6,16,17]

 

Constraints:

## Solution(Python) ```Python class Solution: def runningSum(self, nums: List[int]) -> List[int]: return self.inline(nums) # Time Complexity: O(n^2) def naive(self, nums: List[int]) -> List[int]: n = len(nums) res = [0] * n for i in range(n): res[i] = sum(nums[j] for j in range(i + 1)) return res # Time Complexity: O(n) def better(self, nums: List[int]) -> List[int]: n = len(nums) res = [0] * n for i in range(n): if i == 0: res[i] = nums[i] else: res[i] = res[i - 1] + nums[i] return res # Time Complexity: O(n) def builtinfunc(self, nums: List[int]) -> List[int]: return accumulate(nums) # Time Complexity: O(n) def inline(self, nums: List[int]) -> List[int]: n = len(nums) for i in range(1, n): nums[i] += nums[i - 1] return nums ```