# 1679-max-number-of-k-sum-pairs Try it on leetcode ## Description

You are given an integer array nums and an integer k.

In one operation, you can pick two numbers from the array whose sum equals k and remove them from the array.

Return the maximum number of operations you can perform on the array.

 

Example 1:

Input: nums = [1,2,3,4], k = 5
Output: 2
Explanation: Starting with nums = [1,2,3,4]:
- Remove numbers 1 and 4, then nums = [2,3]
- Remove numbers 2 and 3, then nums = []
There are no more pairs that sum up to 5, hence a total of 2 operations.

Example 2:

Input: nums = [3,1,3,4,3], k = 6
Output: 1
Explanation: Starting with nums = [3,1,3,4,3]:
- Remove the first two 3's, then nums = [1,4,3]
There are no more pairs that sum up to 6, hence a total of 1 operation.

 

Constraints:

## Solution(Python) ```Python class Solution: def maxOperations(self, nums: List[int], k: int) -> int: return self.hashing(nums, k) # Time Complexity: O(n^2*OP) # Space Comeplxity: O(n) def bruteforce(self, nums, k): s = Counter(nums) cnt = 0 print(s) while True: change = 0 for key in list(s): if change: break if k - key in s: s[key] -= 1 s[k - key] -= 1 if s[key] <= 0: del s[key] if s[k - key] <= 0: del s[k - key] change += 1 print(s, cnt) if change > 0: cnt += change else: return cnt # Time Complexity: O(nlogn) # Space Complexity: O(1) def sorting(self, nums: List[int], k: int) -> int: nums.sort() i, j = 0, len(nums) - 1 cnt = 0 while i < j: if nums[i] + nums[j] == k: cnt += 1 i += 1 j -= 1 elif nums[i] + nums[j] > k: j -= 1 else: i += 1 return cnt # Time Complexity: O(n) # Space Complexity: O(n) def hashing(self, nums: List[int], k: int) -> int: hash = defaultdict(int) cnt = 0 for num in nums: target = k - num if hash[target] > 0: hash[target] -= 1 cnt += 1 else: hash[num] += 1 return cnt ```