# 410-split-array-largest-sum Try it on leetcode ## Description

Given an array nums which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays.

Write an algorithm to minimize the largest sum among these m subarrays.

 

Example 1:

Input: nums = [7,2,5,10,8], m = 2
Output: 18
Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

Example 2:

Input: nums = [1,2,3,4,5], m = 2
Output: 9

Example 3:

Input: nums = [1,4,4], m = 3
Output: 4

 

Constraints:

## Solution(Python) ```Python class Solution: def splitArray(self, nums: List[int], m: int) -> int: return self.binarySearch(nums, m) # Time Complexity: O(n^2*m) # Space Complexity: O(n*m) def topDownDp(self, nums: List[int], m: int) -> int: n = len(nums) prefix_sum = [0] + list(itertools.accumulate(nums)) @functools.lru_cache(None) def get_min_largest_split_sum(cur_index, sub_arr_cnt): if sub_arr_cnt == 1: return prefix_sum[n] - prefix_sum[cur_index] min_largst_sum = prefix_sum[n] for i in range(cur_index, n - sub_arr_cnt + 1): first_split_sum = prefix_sum[i + 1] - prefix_sum[cur_index] largest_split_sum = max( first_split_sum, get_min_largest_split_sum( i + 1, sub_arr_cnt - 1) ) min_largst_sum = min(largest_split_sum, min_largst_sum) if first_split_sum >= min_largst_sum: break return min_largst_sum return get_min_largest_split_sum(0, m) # Time Complexity: O(nlog(S)) # Space Complexity: O(1) def binarySearch(self, nums: List[int], m: int) -> int: def min_subarrays_required(max_sum_allowed): cur_sum = 0 split_req = 0 for ele in nums: if cur_sum + ele <= max_sum_allowed: cur_sum += ele else: cur_sum = ele split_req += 1 return split_req + 1 left = max(nums) right = sum(nums) while left <= right: max_sum_allowed = (left + right) >> 1 if min_subarrays_required(max_sum_allowed) <= m: right = max_sum_allowed - 1 minimum_largest_split_sum = max_sum_allowed else: left = max_sum_allowed + 1 return minimum_largest_split_sum ```