# 456-132-pattern Try it on leetcode ## Description

Given an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j].

Return true if there is a 132 pattern in nums, otherwise, return false.

 

Example 1:

Input: nums = [1,2,3,4]
Output: false
Explanation: There is no 132 pattern in the sequence.

Example 2:

Input: nums = [3,1,4,2]
Output: true
Explanation: There is a 132 pattern in the sequence: [1, 4, 2].

Example 3:

Input: nums = [-1,3,2,0]
Output: true
Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0].

 

Constraints:

## Solution(Python) ```Python class Solution: def find132pattern(self, nums: List[int]) -> bool: return self.arrayasstack(nums) # Time Compleity :O(n^3) # space Complexity: O(1) def bruteforce(self, nums): n = len(nums) for i in range(n): for j in range(i + 1, n): for k in range(j + 1, n): if nums[i] < nums[k] < nums[j]: return True return False # Time Compleity :O(n^2) # space Complexity: O(1) def betterbruteforce(self, nums): n = len(nums) min_i = inf for j in range(n): if nums[j] < min_i: min_i = nums[j] for k in range(j + 1, n): if min_i < nums[k] < nums[j]: return True return False # Time Compleity :O(n^2) # space Complexity: O(n) def interval(self, nums): n = len(nums) intervals = [] min_point_after_last_peak_index = 0 for i in range(1, n): if nums[i] < nums[i - 1]: if min_point_after_last_peak_index < i - 1: intervals.append( nums[min_point_after_last_peak_index], nums[i - 1]) min_point_after_last_peak_index = i for i_num, j_num in intervals: if i_num < nums[i] < j_num: return True return False # Time Compleity :O(n) # space Complexity: O(n) def stack(self, nums): n = len(nums) if n < 3: return False stack = [] min_array = [-1] * n min_array[0] = nums[0] for i in range(1, n): min_array[i] = min(min_array[i - 1], nums[i]) for j in range(n - 1, -1, -1): if nums[j] <= min_array[j]: continue while stack and stack[-1] <= min_array[j]: stack.pop() if stack and min_array[j] < stack[-1] < nums[j]: return True stack.append(nums[j]) return False # Time Compleity :O(nlogn) # space Complexity: O(n) def binarysearch(self, nums): n = len(nums) if n < 3: return False min_array = [-1] * n min_array[0] = nums[0] min_array[0] = nums[0] for i in range(1, n): min_array[i] = min(min_array[i - 1], nums[i]) k = n for j in range(n - 1, -1, -1): if nums[j] <= min_array[j]: continue k = bisect_left(nums, min_array[j] + 1, k, n) if k < n and min_array[j] < nums[k] < nums[j]: return True k -= 1 nums[k] = nums[j] return False # Time Compleity :O(n) # space Complexity: O(n) def arrayasstack(self, nums): if len(nums) < 3: return False min_array = [-1] * len(nums) min_array[0] = nums[0] for i in range(1, len(nums)): min_array[i] = min(min_array[i - 1], nums[i]) k = len(nums) for j in range(len(nums) - 1, -1, -1): if nums[j] <= min_array[j]: continue while k < len(nums) and nums[k] <= min_array[j]: k += 1 if k < len(nums) and nums[k] < nums[j]: return True k -= 1 nums[k] = nums[j] return False ```