# 473-matchsticks-to-square Try it on leetcode ## Description

You are given an integer array matchsticks where matchsticks[i] is the length of the ith matchstick. You want to use all the matchsticks to make one square. You should not break any stick, but you can link them up, and each matchstick must be used exactly one time.

Return true if you can make this square and false otherwise.

 

Example 1:

Input: matchsticks = [1,1,2,2,2]
Output: true
Explanation: You can form a square with length 2, one side of the square came two sticks with length 1.

Example 2:

Input: matchsticks = [3,3,3,3,4]
Output: false
Explanation: You cannot find a way to form a square with all the matchsticks.

 

Constraints:

## Solution(Python) ```Python class Solution: def makesquare(self, matchsticks: List[int]) -> bool: return self.dp(matchsticks) """ Time Complexity: O(4^n) Space Complexity: O(n) """ def dfs(self, matchsticks: List[int]) -> bool: if not matchsticks: return False length = sum(matchsticks) // 4 if sum(matchsticks) / 4 != length: return False matchsticks.sort(reverse=True) sides = [0] * 4 def backtrack(i): if i == len(matchsticks): return True for j in range(4): if sides[j] + matchsticks[i] <= length: sides[j] += matchsticks[i] if backtrack(i + 1): return True sides[j] -= matchsticks[i] return False return backtrack(0) """ Time Complexity: O(n*2^n) Space Complexity: O(n+2^n) """ def dp(self, matchsticks: List[int]) -> bool: if not matchsticks: return False lth = len(matchsticks) perimeter = sum(matchsticks) side = perimeter // 4 if side * 4 != perimeter: return False dp = {} def recur(mask, sidesfilledsofar): total = 0 for i in range(lth - 1, -1, -1): if not (mask & (1 << i)): total += matchsticks[lth - 1 - i] if total > 0 and total % side == 0: sidesfilledsofar += 1 if sidesfilledsofar == 3: return True if (mask, sidesfilledsofar) in dp: return dp[(mask, sidesfilledsofar)] ans = False remainingspace = side * (int(total / side) + 1) - total for i in range(lth - 1, -1, -1): if matchsticks[lth - 1 - i] <= remainingspace and mask & (1 << i): if recur(mask ^ (1 << i), sidesfilledsofar): ans = True break dp[(mask, sidesfilledsofar)] = ans return ans return recur((1 << lth) - 1, 0) ```