# 923-3sum-with-multiplicity Try it on leetcode ## Description

Given an integer array arr, and an integer target, return the number of tuples i, j, k such that i < j < k and arr[i] + arr[j] + arr[k] == target.

As the answer can be very large, return it modulo 109 + 7.

 

Example 1:

Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation: 
Enumerating by the values (arr[i], arr[j], arr[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.

Example 2:

Input: arr = [1,1,2,2,2,2], target = 5
Output: 12
Explanation: 
arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.

 

Constraints:

## Solution(Python) ```Python class Solution: def __init__(self): self.modulo = 10**9 + 7 def threeSumMulti(self, arr: List[int], target: int) -> int: return self.threepointer(arr, target) # run three nested loops with indcies i,j,k ,i int: cnt = 0 n = len(arr) for i in range(n): for j in range(i + 1, n): for k in range(j + 1, n): if arr[i] + arr[j] + arr[k] == target: cnt += 1 return cnt % self.modulo def threepointer(self, arr: List[int], target: int) -> int: arr.sort() ans = 0 n = len(arr) for i in range(n): T = target - arr[i] j, k = i + 1, n - 1 while j < k: if arr[j] + arr[k] < T: j += 1 elif arr[j] + arr[k] > T: k -= 1 elif arr[j] != arr[k]: left = right = 1 while j + 1 < k and arr[j] == arr[j + 1]: left += 1 j += 1 while k - 1 > j and arr[k] == arr[k - 1]: right += 1 k -= 1 ans += left * right ans %= self.modulo j += 1 k -= 1 else: ans += (k - j + 1) * (k - j) // 2 ans %= self.modulo break return ans ```