0146-lru-cache¶
Try it on leetcode
Description¶
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity)Initialize the LRU cache with positive sizecapacity.int get(int key)Return the value of thekeyif the key exists, otherwise return-1.void put(int key, int value)Update the value of thekeyif thekeyexists. Otherwise, add thekey-valuepair to the cache. If the number of keys exceeds thecapacityfrom this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 30000 <= key <= 1040 <= value <= 105- At most
2 * 105calls will be made togetandput.
Solution(Python)¶
from collections import deque
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {}
self.order = deque()
def get(self, key: int) -> int:
# if key is presnet in cache iremove the key in orderque and append in left
if key in self.cache:
# Move the accessed key to
# the front of the deque
self.order.remove(key)
self.order.appendleft(key)
return self.cache[key]
else:
return -1
def put(self, key: int, value: int) -> None:
# if key is presnet in cache iremove the key in orderque and append in left
# if capcity is greyer pop
# apped new key
if key in self.cache:
# Update the value and move
# the key to the front
self.cache[key] = value
self.order.remove(key)
self.order.appendleft(key)
else:
if len(self.cache) >= self.capacity:
# Remove the least recently used item
lru_key = self.order.pop()
del self.cache[lru_key]
# Add the new key-value pair
self.cache[key] = value
self.order.appendleft(key)
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)