211-design-add-and-search-words-data-structure¶
Try it on leetcode
Description¶
Design a data structure that supports adding new words and finding if a string matches any previously added string.
Implement the WordDictionary class:
WordDictionary()Initializes the object.void addWord(word)Addswordto the data structure, it can be matched later.bool search(word)Returnstrueif there is any string in the data structure that matcheswordorfalseotherwise.wordmay contain dots'.'where dots can be matched with any letter.
Example:
Input
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
Output
[null,null,null,null,false,true,true,true]
Explanation
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
Constraints:
1 <= word.length <= 500wordinaddWordconsists lower-case English letters.wordinsearchconsist of'.'or lower-case English letters.- At most
50000calls will be made toaddWordandsearch.
Solution(Python)¶
"""
Trie Data structure has
key - denotes current char
children = set of next values (for contant time lookup)
isEnd = boolean to mark end of the word
"""
class TrieNode:
def __init__(self):
self.children = {}
self.isEnd = False
class WordDictionary:
"""
intialize empty trie and store in memory
"""
def __init__(self):
self.trie = TrieNode()
"""
algorithm
initialize curr trie node
iterate char in word
check if children has char
if true:
set curr node as that node
else:
create a trienode with char
set curr node as new node
set curr node isEnd as true
"""
def addWord(self, word: str) -> None:
curr = self.trie
for ch in word:
if ch not in curr.children:
curr.children[ch] = TrieNode()
curr = curr.children[ch]
curr.isEnd = True
"""
algorithm
initialize curr trie node
fun dfs(index)
iterate char in word
if index reaches n:
return True
if char is .
for all children
if dfs(children): return True
elif char in children:
dfs(children of char)
return false
return curr.isEnd
"""
def search(self, word: str) -> bool:
return self.dfs(self.trie, word, 0, len(word))
def dfs(self, root, word, i, n):
if i == n:
return root.isEnd
if word[i] == ".":
for child in root.children:
if self.dfs(root.children[child], word, i + 1, n):
return True
elif word[i] in root.children:
return self.dfs(root.children[word[i]], word, i + 1, n)
return False
# Your WordDictionary object will be instantiated and called as such:
# obj = WordDictionary()
# obj.addWord(word)
# param_2 = obj.search(word)