460-lfu-cache¶
Try it on leetcode
Description¶
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, 3, null, -1, 3, 4] Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
Solution(Python)¶
class ListNode:
def __init__(self, key, val):
self.key = key
self.val = val
self.freq = 1
self.prev = None
self.next = None
class DLL:
def __init__(self):
self.head = ListNode(0, 0)
self.tail = ListNode(0, 0)
self.head.next = self.tail
self.tail.prev = self.head
self.size = 0
def insertHead(self, node):
headNext = self.head.next
headNext.prev = node
self.head.next = node
node.prev = self.head
node.next = headNext
self.size += 1
def removeNode(self, node):
node.next.prev = node.prev
node.prev.next = node.next
self.size -= 1
def removeTail(self):
tail = self.tail.prev
self.removeNode(tail)
return tail
class LFUCache:
def __init__(self, capacity: int):
self.cache = {}
self.freqTable = collections.defaultdict(DLL)
self.capacity = capacity
self.minFreq = 0
def get(self, key: int) -> int:
if key not in self.cache:
return -1
return self.updateCache(self.cache[key], key, self.cache[key].val)
def put(self, key: int, value: int) -> None:
if not self.capacity:
return
if key in self.cache:
self.updateCache(self.cache[key], key, value)
else:
if len(self.cache) == self.capacity:
prevTail = self.freqTable[self.minFreq].removeTail()
del self.cache[prevTail.key]
node = ListNode(key, value)
self.freqTable[1].insertHead(node)
self.cache[key] = node
self.minFreq = 1
def updateCache(self, node, key, value):
node = self.cache[key]
node.val = value
prevFreq = node.freq
node.freq += 1
self.freqTable[prevFreq].removeNode(node)
self.freqTable[node.freq].insertHead(node)
if prevFreq == self.minFreq and self.freqTable[prevFreq].size == 0:
self.minFreq += 1
return node.val