23-merge-k-sorted-lists¶
Try it on leetcode
Description¶
You are given an array of k
linked-lists lists
, each linked-list is sorted in ascending order.
Merge all the linked-lists into one sorted linked-list and return it.
Example 1:
Input: lists = [[1,4,5],[1,3,4],[2,6]] Output: [1,1,2,3,4,4,5,6] Explanation: The linked-lists are: [ 1->4->5, 1->3->4, 2->6 ] merging them into one sorted list: 1->1->2->3->4->4->5->6
Example 2:
Input: lists = [] Output: []
Example 3:
Input: lists = [[]] Output: []
Constraints:
k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i]
is sorted in ascending order.- The sum of
lists[i].length
won't exceed10^4
.
Solution(Python)¶
from queue import PriorityQueue
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
return self.spaceoptmized(lists)
"""
traverse all nodes and store them in array
sort the array
create the sorted linkedlist
Time Complexity: O(n log n)
Space Complexity: O(n)
"""
def bruteforce(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
sortedvals = []
for list in lists:
while list:
sortedvals.append(list.val)
list = list.next
DummyNode = cur = ListNode(-1)
sortedvals.sort()
for val in sortedvals:
cur.next = ListNode(val)
cur = cur.next
return DummyNode.next
"""
we can optmize bruteforce approach if we put our kth node with prioirty of its value in a priority queue and we can access the smallest value in O(1)
Time Complexity: O(nlogk)
Space Complexity: O(n)
"""
def timeoptmized(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
ListNode.__lt__ = lambda self, other: self.val < other.val
Res = cur = ListNode(-1)
q = PriorityQueue()
for lst in lists:
if lst:
q.put((lst.val, lst))
while not q.empty():
val, node = q.get()
cur.next = ListNode(val)
cur = cur.next
node = node.next
if node:
q.put((node.val, node))
return Res.next
"""
merging a two sorted list can be done with constant space
what if we keep on merging the adjacent pairs until it becomes a single sorted lists
at each step the count of lists reduced into half atnost atmost log2k of such iterations need for each interation we got n values to traverse
Time Complexity: O(nlogk)
Space Complexity: O(1)
"""
def spaceoptmized(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
k = len(lists)
interval = 1
while interval < k:
for i in range(0, k - interval, 2 * interval):
lists[i] = self.mergeTwoLists(lists[i], lists[i + interval])
interval *= 2
return lists[0] if k > 0 else None
def mergeTwoLists(self, lst1, lst2):
sortedlst = cur = ListNode(-1)
while lst1 and lst2:
if lst1.val <= lst2.val:
cur.next = lst1
lst1 = lst1.next
else:
cur.next = lst2
lst2 = lst2.next
cur = cur.next
if not lst1:
cur.next = lst2
else:
cur.next = lst1
return sortedlst.next