4-median-of-two-sorted-arrays¶
Try it on leetcode
Description¶
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2] Output: 2.00000 Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4] Output: 2.50000 Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Solution(Python)¶
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
return self.OptmialbinarySeach(nums1, nums2)
# Time Complexity: O(m+n)
# Space Complexity: O(m+n)
def bruteforce(self, nums1: List[int], nums2: List[int]) -> float:
n = len(nums1)
m = len(nums2)
nums1 = nums1[:] + [0] * m
i = n - 1
j = m - 1
k = m + n - 1
while i >= 0 and j >= 0:
if nums1[i] > nums2[j]:
nums1[k] = nums1[i]
i -= 1
k -= 1
else:
nums1[k] = nums2[j]
j -= 1
k -= 1
while j >= 0:
nums1[k] = nums2[j]
j -= 1
k -= 1
l = m + n
mid = l // 2
print(nums1)
if l % 2 == 0:
return (nums1[mid] + nums1[mid - 1]) / 2
else:
return nums1[mid]
# Time Complexity: O(log(m+n))
def binarySeach(self, A, B):
l = len(A) + len(B)
if l % 2 == 1:
return self.kth(A, B, l // 2)
else:
return (self.kth(A, B, l // 2) + self.kth(A, B, l // 2 - 1)) / 2.0
def kth(self, a, b, k):
if not a:
return b[k]
if not b:
return a[k]
ia, ib = len(a) // 2, len(b) // 2
ma, mb = a[ia], b[ib]
# when k is bigger than the sum of a and b's median indices
if ia + ib < k:
# if a's median is bigger than b's, b's first half doesn't include k
if ma > mb:
return self.kth(a, b[ib + 1:], k - ib - 1)
else:
return self.kth(a[ia + 1:], b, k - ia - 1)
# when k is smaller than the sum of a and b's indices
else:
# if a's median is bigger than b's, a's second half doesn't include k
if ma > mb:
return self.kth(a[:ia], b, k)
else:
return self.kth(a, b[:ib], k)
# Time Complexity: O(min(log(m),log(n))))
def OptmialbinarySeach(self, A, B):
l = len(A) + len(B)
if l % 2 == 1:
return self.kth(A, B, l // 2)
else:
return (self.kth(A, B, l // 2) + self.kth(A, B, l // 2 - 1)) / 2.0
def kth(self, a, b, k):
if not a:
return b[k]
if not b:
return a[k]
ia, ib = len(a) // 2, len(b) // 2
ma, mb = a[ia], b[ib]
# when k is bigger than the sum of a and b's median indices
if ia + ib < k:
# if a's median is bigger than b's, b's first half doesn't include k
if ma > mb:
return self.kth(a, b[ib + 1:], k - ib - 1)
else:
return self.kth(a[ia + 1:], b, k - ia - 1)
# when k is smaller than the sum of a and b's indices
else:
# if a's median is bigger than b's, a's second half doesn't include k
if ma > mb:
return self.kth(a[:ia], b, k)
else:
return self.kth(a, b[:ib], k)