236-lowest-common-ancestor-of-a-binary-tree¶
Try it on leetcode
Description¶
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).”
Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2 Output: 1
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
p
andq
will exist in the tree.
Solution(Python)¶
class Solution:
def __init__(self):
# Variable to store LCA node.
self.ans = None
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
def recurse_tree(current_node):
# If reached the end of a branch, return False.
if not current_node:
return False
# Left Recursion
left = recurse_tree(current_node.left)
# Right Recursion
right = recurse_tree(current_node.right)
# If the current node is one of p or q
mid = current_node == p or current_node == q
# If any two of the three flags left, right or mid become True.
if mid + left + right >= 2:
self.ans = current_node
# Return True if either of the three bool values is True.
return mid or left or right
# Traverse the tree
recurse_tree(root)
return self.ans