1022-sum-of-root-to-leaf-binary-numbers¶
Try it on leetcode
Description¶
You are given the root
of a binary tree where each node has a value 0
or 1
. Each root-to-leaf path represents a binary number starting with the most significant bit.
- For example, if the path is
0 -> 1 -> 1 -> 0 -> 1
, then this could represent01101
in binary, which is13
.
For all leaves in the tree, consider the numbers represented by the path from the root to that leaf. Return the sum of these numbers.
The test cases are generated so that the answer fits in a 32-bits integer.
Example 1:

Input: root = [1,0,1,0,1,0,1] Output: 22 Explanation: (100) + (101) + (110) + (111) = 4 + 5 + 6 + 7 = 22
Example 2:
Input: root = [0] Output: 0
Constraints:
- The number of nodes in the tree is in the range
[1, 1000]
. Node.val
is0
or1
.
Solution(Python)¶
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumRootToLeaf(self, root: Optional[TreeNode]) -> int:
return self.preorderMorrisTraversal(root)
# Time Complexity: O(n)
# Space Complexity: O(H)
def preorderIterativeTraversal(self, root) -> int:
res = 0
s = []
s.append((root, 0))
while s:
node, curr = s.pop()
if node is not None:
curr = (curr << 1) | node.val
if node.left is None and node.right is None:
res += curr
else:
s.append((node.right, curr))
s.append((node.left, curr))
return res
# Time Complexity: O(n)
# Space Complexity: O(H)
def preorderRecursiveTraversal(self, root) -> int:
res = 0
def dfs(node, cur):
nonlocal res
cur = (cur << 1) | node.val
if node.left is None and node.right is None:
res += cur
if node.right is not None:
dfs(node.right, cur)
if node.left is not None:
dfs(node.left, cur)
dfs(root, 0)
return res
# Time Complexity: O(n)
# Space Complexity: O(1)
def preorderMorrisTraversal(self, root) -> int:
res = 0
node = root
cur = 0
while node:
if node.left:
pred = node.left
steps = 1
while pred.right and pred.right is not node:
pred = pred.right
steps += 1
if pred.right is None:
cur = (cur << 1) | node.val
pred.right = node
node = node.left
else:
if pred.left is None:
res += cur
for _ in range(steps):
cur >>= 1
pred.right = None
node = node.right
else:
cur = (cur << 1) | node.val
if node.right is None:
res += cur
node = node.right
return res