1074-number-of-submatrices-that-sum-to-target

Try it on leetcode

Description

Given a matrix and a target, return the number of non-empty submatrices that sum to target.

A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.

Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.

 

Example 1:

Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.

Example 2:

Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.

Example 3:

Input: matrix = [[904]], target = 0
Output: 0

 

Constraints:

  • 1 <= matrix.length <= 100
  • 1 <= matrix[0].length <= 100
  • -1000 <= matrix[i] <= 1000
  • -10^8 <= target <= 10^8

Solution(Python)

class Solution:
    def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int:
        return self.optimal(matrix, target)

    # Time Complexity: O((m*n)^3)
    # Space Complexity: O(1)
    def bruteforce(self, matrix: List[List[int]], target: int) -> int:
        res = 0
        m = len(matrix)
        n = len(matrix[0])

        def submatrixSum(rowStart, rowSize, colStart, colSize):
            subMatrixSum = 0
            for i in range(rowStart, rowstart + rowSize):
                for j in range(colStart, colStart + colSize):
                    subMatrixSum += matrix[i][j]
            return subMatrixSum

        for rowStart in range(m):
            for rowSize in range(1, m + 1):
                for colStart in range(n):
                    for colSize in range(1, n + 1):
                        if submatrixSum(rowStart, rowSize, colStart, colSize) == target:
                            res += 1
        return res

    # Time Complexity: O((m*n)^2)
    # Space Complexity: O(m*n)
    def better(self, matrix: List[List[int]], target: int) -> int:
        res = 0
        m = len(matrix)
        n = len(matrix[0])

        for row in range(m):
            for col in range(1, n):
                matrix[row][col] += matrix[row][col - 1]

        for colstart in range(n):
            for colend in range(colstart, n):
                for rowstart in range(m):
                    sub_sum = 0
                    for rowend in range(rowstart, m):
                        sub_sum += (
                            matrix[rowend][colend] -
                            matrix[rowend][colstart - 1]
                            if colstart
                            else 0
                        )
                        if sub_sum == target:
                            res += 1
        return res

    # Time Complexity: O((m^2*n))
    # Space Complexity: O(m*n)
    def optimal(self, matrix: List[List[int]], target: int) -> int:
        res = 0
        m = len(matrix)
        n = len(matrix[0])

        for row in range(m):
            for col in range(1, n):
                matrix[row][col] += matrix[row][col - 1]

        for colstart in range(n):
            for colend in range(colstart, n):
                cur_sum = 0
                hash_map = {0: 1}
                for rowstart in range(m):
                    cur_sum += matrix[rowstart][colend] - (
                        matrix[rowstart][colstart - 1] if colstart > 0 else 0
                    )
                    res += hash_map.get(cur_sum - target, 0)
                    hash_map[cur_sum] = hash_map.get(cur_sum, 0) + 1

        return res