1091-shortest-path-in-binary-matrix¶
Try it on leetcode
Description¶
Given an n x n
binary matrix grid
, return the length of the shortest clear path in the matrix. If there is no clear path, return -1
.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)
) to the bottom-right cell (i.e., (n - 1, n - 1)
) such that:
- All the visited cells of the path are
0
. - All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
Example 1:

Input: grid = [[0,1],[1,0]] Output: 2
Example 2:

Input: grid = [[0,0,0],[1,1,0],[1,1,0]] Output: 4
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,0]] Output: -1
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
Solution(Python)¶
class Solution:
def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int:
return self.doublebfs(grid)
# Time Complexity: O(n^2)
# Space Complexity: O(n^2)
def bfs(self, grid: List[List[int]]) -> int:
n = len(grid)
neighs = [(-1, -1), (-1, 0), (-1, 1), (0, -1),
(0, 1), (1, -1), (1, 0), (1, 1)]
if grid[0][0]:
return -1
queue = deque([(1, 0, 0)])
visited = set()
visited.add((0, 0))
while queue:
dist, x, y = queue.popleft()
if x == n - 1 and y == n - 1:
return dist
for dx, dy in neighs:
negh_x, negh_y = x + dx, y + dy
if (
-1 < negh_x < n
and -1 < negh_y < n
and not grid[negh_x][negh_y]
and (negh_x, negh_y) not in visited
):
visited.add((negh_x, negh_y))
queue.append((dist + 1, negh_x, negh_y))
return -1
# Time Complexity: O(n^2)
# Space Complexity: O(n^2)
def doublebfs(self, grid: List[List[int]]) -> int:
n = len(grid)
neighs = [(-1, -1), (-1, 0), (-1, 1), (0, -1),
(0, 1), (1, -1), (1, 0), (1, 1)]
if grid[0][0] or grid[n - 1][n - 1]:
return -1
if n == 1:
return 1
queue1 = deque([(1, 0, 0)])
queue2 = deque([(1, n - 1, n - 1)])
visited1 = defaultdict(lambda: 0)
visited2 = defaultdict(lambda: 0)
visited1[(0, 0)] = 1
visited2[(n - 1, n - 1)] = 1
while queue1 and queue2:
if queue1:
dist, x, y = queue1.popleft()
if (x, y) in visited2:
return dist + visited2[(x, y)] - 1
for dx, dy in neighs:
negh_x, negh_y = x + dx, y + dy
if (
-1 < negh_x < n
and -1 < negh_y < n
and not grid[negh_x][negh_y]
and (negh_x, negh_y) not in visited1
):
visited1[(negh_x, negh_y)] = dist + 1
queue1.append((dist + 1, negh_x, negh_y))
if queue2:
dist, x, y = queue2.popleft()
if (x, y) in visited1:
return dist + visited1[(x, y)] - 1
for dx, dy in neighs:
negh_x, negh_y = x + dx, y + dy
if (
-1 < negh_x < n
and -1 < negh_y < n
and not grid[negh_x][negh_y]
and (negh_x, negh_y) not in visited2
):
visited2[(negh_x, negh_y)] = dist + 1
queue2.append((dist + 1, negh_x, negh_y))
return -1