1202-smallest-string-with-swaps¶
Try it on leetcode
Description¶
You are given a string s
, and an array of pairs of indices in the string pairs
where pairs[i] = [a, b]
indicates 2 indices(0-indexed) of the string.
You can swap the characters at any pair of indices in the given pairs
any number of times.
Return the lexicographically smallest string that s
can be changed to after using the swaps.
Example 1:
Input: s = "dcab", pairs = [[0,3],[1,2]] Output: "bacd" Explaination: Swap s[0] and s[3], s = "bcad" Swap s[1] and s[2], s = "bacd"
Example 2:
Input: s = "dcab", pairs = [[0,3],[1,2],[0,2]] Output: "abcd" Explaination: Swap s[0] and s[3], s = "bcad" Swap s[0] and s[2], s = "acbd" Swap s[1] and s[2], s = "abcd"
Example 3:
Input: s = "cba", pairs = [[0,1],[1,2]] Output: "abc" Explaination: Swap s[0] and s[1], s = "bca" Swap s[1] and s[2], s = "bac" Swap s[0] and s[1], s = "abc"
Constraints:
1 <= s.length <= 10^5
0 <= pairs.length <= 10^5
0 <= pairs[i][0], pairs[i][1] < s.length
s
only contains lower case English letters.
Solution(Python)¶
class Solution:
def __init__(self):
self.N = 100001
self.adj = [[] for _ in range(self.N)]
self.visited = [False] * self.N
def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str:
return self.UnionFind_approach(s, pairs)
# Time Complexity: O(E+Vlog(V))
# Space Complexity: O(E+V)
def dfs_approach(self, s: str, pairs: List[List[int]]) -> str:
s = list(s)
for edge in pairs:
source = edge[0]
destination = edge[1]
self.adj[source].append(destination)
self.adj[destination].append(source)
for vertex in range(len(s)):
if not self.visited[vertex]:
characters = []
indices = []
self.dfs(s, vertex, characters, indices)
characters.sort()
indices.sort()
for i in range(len(indices)):
s[indices[i]] = characters[i]
return "".join(s)
def dfs(self, s, vertex, characters, indices):
characters.append(s[vertex])
indices.append(vertex)
self.visited[vertex] = True
for adjacent in self.adj[vertex]:
if not self.visited[adjacent]:
self.dfs(s, adjacent, characters, indices)
# Time Complexity: O((E+V).αV+VlogV)
# Space Complexity: O(V)
def UnionFind_approach(self, s: str, pairs: List[List[int]]) -> str:
uf = UnionFind(len(s))
s = list(s)
for (source, dest) in pairs:
uf.union(source, dest)
hashmap = defaultdict(lambda: [])
for v in range(len(s)):
root = uf.find(v)
hashmap[root].append(v)
smallestString = [" "] * len(s)
for component in hashmap:
indices = hashmap[component]
characters = [s[index] for index in indices]
characters.sort()
for i in range(len(indices)):
smallestString[indices[i]] = characters[i]
return "".join(smallestString)
class UnionFind:
def __init__(self, n):
self.n = n
self.root = [i for i in range(n)]
self.rank = [0] * n
# Time Complexity: O(αn)
def find(self, a):
while a != self.root[a]:
a = self.root[a]
return self.root[a]
# Time Complexity: O(αn)
def union(self, a, b):
groupA = self.find(a)
groupB = self.find(b)
if groupA != groupB:
if self.rank[groupA] >= self.rank[groupB]:
self.root[groupB] = groupA
self.rank[groupA] += 1
elif self.rank[groupA] < self.rank[groupB]:
self.root[groupA] = groupB
self.rank[groupB] += 1
def isconnected(self, a, b):
return self.find(a) == self.find(b)