1696-jump-game-vi¶
Try it on leetcode
Description¶
You are given a 0-indexed integer array nums
and an integer k
.
You are initially standing at index 0
. In one move, you can jump at most k
steps forward without going outside the boundaries of the array. That is, you can jump from index i
to any index in the range [i + 1, min(n - 1, i + k)]
inclusive.
You want to reach the last index of the array (index n - 1
). Your score is the sum of all nums[j]
for each index j
you visited in the array.
Return the maximum score you can get.
Example 1:
Input: nums = [1,-1,-2,4,-7,3], k = 2 Output: 7 Explanation: You can choose your jumps forming the subsequence [1,-1,4,3] (underlined above). The sum is 7.
Example 2:
Input: nums = [10,-5,-2,4,0,3], k = 3 Output: 17 Explanation: You can choose your jumps forming the subsequence [10,4,3] (underlined above). The sum is 17.
Example 3:
Input: nums = [1,-5,-20,4,-1,3,-6,-3], k = 2 Output: 0
Constraints:
1 <= nums.length, k <= 105
-104 <= nums[i] <= 104
Solution(Python)¶
class Solution:
def maxResult(self, nums: List[int], k: int) -> int:
return self.optimal(nums, k)
# Time Complexity: O(n*k)
# Space Complexity: O(n*k)
def naive(self, nums: List[int], k: int) -> int:
n = len(nums)
@cache
def dfs(i):
if i >= n-1:
return nums[i]
res = float('-inf')
for j in range(i+1,min(n-1,i+k)+1):
include = dfs(j)
res = max(res,nums[i]+include)
return res if res != float('-inf') else 0
return dfs(0)
# Time Complexity: O(nlogk)
# Space Complexity: O(n)
def better(self, nums: List[int], k: int) -> int:
n = len(nums)
dp = [0] * (n+1)
q = []
heapq.heapify(q)
for i in range(n-1, -1, -1):
sum_so_far = float('-inf')
while q and q[0][1] > min(n-1,i+k):
heapq.heappop(q)
if q:
sum_so_far = max(sum_so_far, -q[0][0])
dp[i] = nums[i] + (sum_so_far if sum_so_far != float('-inf') else 0)
heapq.heappush(q,(-dp[i],i))
return dp[0]
# Time Complexity: O(n)
# Space Complexity: O(n)
def optimal(self, nums: List[int], k: int) -> int:
deq, n = deque([0]), len(nums)
for i in range(1, n):
while deq and deq[0] < i - k: deq.popleft()
nums[i] += nums[deq[0]]
while deq and nums[i] >= nums[deq[-1]]: deq.pop()
deq.append(i)
return nums[-1]