18-4sum¶
Try it on leetcode
Description¶
Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
,b
,c
, andd
are distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8 Output: [[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
Solution(Python)¶
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
def kSum(nums: List[int], target: int, k: int) -> List[List[int]]:
res = []
# If we have run out of numbers to add, return res.
if not nums:
return res
# There are k remaining values to add to the sum. The
# average of these values is at least target // k.
average_value = target // k
# We cannot obtain a sum of target if the smallest value
# in nums is greater than target // k or if the largest
# value in nums is smaller than target // k.
if average_value < nums[0] or nums[-1] < average_value:
return res
if k == 2:
return twoSum(nums, target)
for i in range(len(nums)):
if i == 0 or nums[i - 1] != nums[i]:
for subset in kSum(nums[i + 1:], target - nums[i], k - 1):
res.append([nums[i]] + subset)
return res
def twoSum(nums: List[int], target: int) -> List[List[int]]:
res = []
s = set()
for i in range(len(nums)):
if len(res) == 0 or res[-1][1] != nums[i]:
if target - nums[i] in s:
res.append([target - nums[i], nums[i]])
s.add(nums[i])
return res
nums.sort()
return kSum(nums, target, 4)