240-search-a-2d-matrix-ii¶
Try it on leetcode
Description¶
Write an efficient algorithm that searches for a target
value in an m x n
integer matrix
. The matrix
has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
Example 1:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5 Output: true
Example 2:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20 Output: false
Constraints:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matrix[i][j] <= 109
- All the integers in each row are sorted in ascending order.
- All the integers in each column are sorted in ascending order.
-109 <= target <= 109
Solution(Python)¶
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
return self.linearSearch(matrix, target)
# Time Complexity: O(MN)
# Space Complexity: O(1)
def bruteforce(self, matrix: List[List[int]], target: int) -> bool:
m, n = len(matrix), len(matrix[0])
for i in range(m):
for j in range(n):
if matrix[i][j] == target:
return True
return False
# Time Complexity: O(M+N)
# Space Complexity: O(1)
def linearSearch(self, matrix: List[List[int]], target: int) -> bool:
m, n = len(matrix), len(matrix[0])
i, j = 0, n - 1
while i <= m - 1 and j >= 0:
curr = matrix[i][j]
if target == curr:
return True
if target > curr:
i += 1
else:
j -= 1
return False