315-count-of-smaller-numbers-after-self¶
Try it on leetcode
Description¶
You are given an integer array nums
and you have to return a new counts
array. The counts
array has the property where counts[i]
is the number of smaller elements to the right of nums[i]
.
Example 1:
Input: nums = [5,2,6,1] Output: [2,1,1,0] Explanation: To the right of 5 there are 2 smaller elements (2 and 1). To the right of 2 there is only 1 smaller element (1). To the right of 6 there is 1 smaller element (1). To the right of 1 there is 0 smaller element.
Example 2:
Input: nums = [-1] Output: [0]
Example 3:
Input: nums = [-1,-1] Output: [0,0]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Solution(Python)¶
class SelfBST:
def __init__(self, arr, n):
self.n = n
self.cntArray = [0] * n
def cntArr(self):
return self.cntArray
class Solution:
def countSmaller(self, nums: List[int]) -> List[int]:
return self.selfBalanceBst(nums)
# Time Complexity: O(n^2)
# Space Complexity: O(n)
def naive(self, nums: List[int]) -> List[int]:
n = len(nums)
res = [0] * n
for i in range(n):
for j in range(i + 1, n):
if nums[j] < nums[i]:
res[i] += 1
return res
# Time Complexity: O(nlogn)
# Space Complexity: O(n)
def selfBalanceBst(self, nums: List[int]) -> List[int]:
rank, N, res = {val: i + 1 for i,
val in enumerate(sorted(nums))}, len(nums), []
BITree = [0] * (N + 1)
def update(i):
while i <= N:
BITree[i] += 1
i += i & -i
def getSum(i):
s = 0
while i:
s += BITree[i]
i -= i & -i
return s
for x in reversed(nums):
res += (getSum(rank[x] - 1),)
update(rank[x])
return res[::-1]