338-counting-bits¶
Try it on leetcode
Description¶
Given an integer n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
's in the binary representation of i
.
Example 1:
Input: n = 2 Output: [0,1,1] Explanation: 0 --> 0 1 --> 1 2 --> 10
Example 2:
Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101
Constraints:
0 <= n <= 105
Follow up:
- It is very easy to come up with a solution with a runtime of
O(n log n)
. Can you do it in linear timeO(n)
and possibly in a single pass? - Can you do it without using any built-in function (i.e., like
__builtin_popcount
in C++)?
Solution(Python)¶
class Solution:
def countBits(self, n: int) -> List[int]:
return self.dynamicprogramming(n)
# Time Complexity :O(nlogn)
# Space Complexity: O(n)
def naive(self, n: int) -> List[int]:
return [self.countones(num) for num in range(0, n + 1)]
# Time Complexity :O(n)
# Space Complexity: O(n)
def dynamicprogramming(self, n: int) -> List[int]:
dp = [0] * (n + 1)
offset = 1
for index in range(1, n + 1):
if index == offset * 2:
offset *= 2
dp[index] = dp[index - offset] + 1
return dp
def countones(self, num):
cnt = 0
while num:
cnt += 1
num &= num - 1
return cnt