543-diameter-of-binary-tree¶
Try it on leetcode
Description¶
Given the root
of a binary tree, return the length of the diameter of the tree.
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root
.
The length of a path between two nodes is represented by the number of edges between them.
Example 1:

Input: root = [1,2,3,4,5] Output: 3 Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
Example 2:
Input: root = [1,2] Output: 1
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -100 <= Node.val <= 100
Solution(Python)¶
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
return self.optimize(root)
# Time Complexity: O(n^2)
# Space Complexity: O(H)
def bruteforce(self, node: Optional[TreeNode]) -> int:
if node is None:
return 0
lheight = self.height(node.left)
rheight = self.height(node.right)
ldiameter = self.bruteforce(node.left)
rdiameter = self.bruteforce(node.right)
return max(lheight + rheight, max(ldiameter, rdiameter))
# Time Complexity: O(n)
# Space Complexity: O(H)
def optimize(self, node: Optional[TreeNode]) -> int:
ans = 0
def dfs(node):
nonlocal ans
if node is None:
return 0
left_height = dfs(node.left)
right_height = dfs(node.right)
cur_width = left_height + right_height
if cur_width > ans:
ans = cur_width
return 1 + max(left_height, right_height)
dfs(node)
return ans
def height(self, node):
if node is None:
return 0
return 1 + max(self.height(node.left), self.height(node.right))