97-interleaving-string

Try it on leetcode

Description

Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.

An interleaving of two strings s and t is a configuration where they are divided into non-empty substrings such that:

  • s = s1 + s2 + ... + sn
  • t = t1 + t2 + ... + tm
  • |n - m| <= 1
  • The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ...

Note: a + b is the concatenation of strings a and b.

 

Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true

Example 2:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false

Example 3:

Input: s1 = "", s2 = "", s3 = ""
Output: true

 

Constraints:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1, s2, and s3 consist of lowercase English letters.

 

Follow up: Could you solve it using only O(s2.length) additional memory space?

Solution(Python)

class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        return self.memoize(s1, s2, s3)
        
    # Time Complexity: O(2^(m+n))
    # space Complexity: O(m+n)
    def bruteforce(self, s1: str, s2: str, s3: str) -> bool:
        def dfs(s1,i,s2,j,res,s3):
            if res == s3 and i == len(s1) and j == len(s2):
                return True
            ans = False
            if i < len(s1):
                ans |= dfs(s1,i+1,s2,j,res+s1[i],s3)
            if j < len(s2):
                ans |= dfs(s1,i,s2,j+1,res+s2[j],s3)
            return ans
        
        if len(s1) + len(s2) != len(s3):
            return False
        
        return dfs(s1,0,s2,0,"",s3)
    
    # Time Complexity: O(m*n)
    # space Complexity: O(m*n)
    def memoize(self, s1: str, s2: str, s3: str) -> bool:
        if len(s1) + len(s2) != len(s3):
            return False
        
        dp = [[0 for _ in range(len(s2)+1)]for _ in range(len(s1)+1)] 
        for i in range(len(s1)+1):
            for j in range(len(s2)+1):
                if  i == 0 and j == 0:
                    dp[i][j] = True
                elif i == 0:
                    dp[i][j] = dp[i][j-1] and s2[j-1] == s3[i+j-1] 
                elif j == 0:
                    dp[i][j] = dp[i-1][j] and s1[i-1] == s3[i+j-1] 
                else:
                    dp[i][j] = ( dp[i][j-1] and s2[j-1] == s3[i+j-1] ) or (dp[i-1][j] and s1[i-1] == s3[i+j-1] )
        
        return dp[-1][-1]