1480-running-sum-of-1d-array¶
Try it on leetcode
Description¶
Given an array nums
. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i])
.
Return the running sum of nums
.
Example 1:
Input: nums = [1,2,3,4] Output: [1,3,6,10] Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].
Example 2:
Input: nums = [1,1,1,1,1] Output: [1,2,3,4,5] Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].
Example 3:
Input: nums = [3,1,2,10,1] Output: [3,4,6,16,17]
Constraints:
1 <= nums.length <= 1000
-10^6 <= nums[i] <= 10^6
Solution(Python)¶
class Solution:
def runningSum(self, nums: List[int]) -> List[int]:
return self.inline(nums)
# Time Complexity: O(n^2)
def naive(self, nums: List[int]) -> List[int]:
n = len(nums)
res = [0] * n
for i in range(n):
res[i] = sum(nums[j] for j in range(i + 1))
return res
# Time Complexity: O(n)
def better(self, nums: List[int]) -> List[int]:
n = len(nums)
res = [0] * n
for i in range(n):
if i == 0:
res[i] = nums[i]
else:
res[i] = res[i - 1] + nums[i]
return res
# Time Complexity: O(n)
def builtinfunc(self, nums: List[int]) -> List[int]:
return accumulate(nums)
# Time Complexity: O(n)
def inline(self, nums: List[int]) -> List[int]:
n = len(nums)
for i in range(1, n):
nums[i] += nums[i - 1]
return nums