329-longest-increasing-path-in-a-matrix¶
Try it on leetcode
Description¶
Given an m x n
integers matrix
, return the length of the longest increasing path in matrix
.
From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).
Example 1:

Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9]
.
Example 2:

Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
Example 3:
Input: matrix = [[1]] Output: 1
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
Solution(Python)¶
class Solution:
def __init__(self):
self.neighbours = [(1, 0), (-1, 0), (0, 1), (0, -1)]
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
return self.topdown(matrix)
# Time Complexity: O(m*n)
# Space Complexity: O(m*n)
def topdown(self, matrix: List[List[int]]) -> int:
# determine m,n
self.m, self.n = len(matrix), len(matrix[0])
self.max_len = 0
self.matrix = matrix
return max(self.dfs(i, j) for j in range(self.n) for i in range(self.m))
@cache
def dfs(self, i, j):
val = self.matrix[i][j]
return 1 + max(
self.dfs(i - 1, j) if i and val > self.matrix[i - 1][j] else 0,
self.dfs(i + 1, j) if i < self.m -
1 and val > self.matrix[i + 1][j] else 0,
self.dfs(i, j - 1) if j and val > self.matrix[i][j - 1] else 0,
self.dfs(i, j + 1) if j < self.n -
1 and val > self.matrix[i][j + 1] else 0,
)