923-3sum-with-multiplicity¶
Try it on leetcode
Description¶
Given an integer array arr
, and an integer target
, return the number of tuples i, j, k
such that i < j < k
and arr[i] + arr[j] + arr[k] == target
.
As the answer can be very large, return it modulo 109 + 7
.
Example 1:
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (arr[i], arr[j], arr[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times.
Example 2:
Input: arr = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.
Constraints:
3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300
Solution(Python)¶
class Solution:
def __init__(self):
self.modulo = 10**9 + 7
def threeSumMulti(self, arr: List[int], target: int) -> int:
return self.threepointer(arr, target)
# run three nested loops with indcies i,j,k ,i<j,k and cnt it
# Time Complexity: O(n^3)
# Space Complexity: O(1)
def bruteforce(self, arr: List[int], target: int) -> int:
cnt = 0
n = len(arr)
for i in range(n):
for j in range(i + 1, n):
for k in range(j + 1, n):
if arr[i] + arr[j] + arr[k] == target:
cnt += 1
return cnt % self.modulo
def threepointer(self, arr: List[int], target: int) -> int:
arr.sort()
ans = 0
n = len(arr)
for i in range(n):
T = target - arr[i]
j, k = i + 1, n - 1
while j < k:
if arr[j] + arr[k] < T:
j += 1
elif arr[j] + arr[k] > T:
k -= 1
elif arr[j] != arr[k]:
left = right = 1
while j + 1 < k and arr[j] == arr[j + 1]:
left += 1
j += 1
while k - 1 > j and arr[k] == arr[k - 1]:
right += 1
k -= 1
ans += left * right
ans %= self.modulo
j += 1
k -= 1
else:
ans += (k - j + 1) * (k - j) // 2
ans %= self.modulo
break
return ans